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We give optimal conditions concerning the range of interactions for the absence 
of spontaneous breakdown of continuous symmetries for one- and two- 
dimensional quantum and classical lattice and continuum systems. For a class of 
models verifying infrared bounds our conditions are necessary and sufficient. 
Using the same techniques we obtain "a priori" bounds on clustering for systems 
with continuous symmetry, improving results of Jasnow and Fisher. 
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1. I N T R O D U C T I O N  

There  are by  now several  papers  (l 5) p roving  absence  of spon taneous  
b r e a k d o w n  of con t inuous  symmet ry  for  one-  and  two-d imens iona l  systems 
at  nonzero  tempera ture ,  for  no t  too long-range  interact ions.  This  is wha t  we 
call  the  M e r m i n - W a g n e r  p h e n o m e n o n ,  as the bas ic  ideas  (and  in some 
cases even the techniques)  are  a l r eady  present  in their  or iginal  papers ,  (6'7) 
where  the absence  of spon taneous  magne t i za t ion  was p roved  for the 
q u a n t u m  a n d  classical  He i senberg  models .  

In  this p a p e r  we ob ta in  best  poss ible  results concern ing  the range  of 
the in te rac t ion  for the absence  of spon taneous  b r e a k d o w n  of con t inuous  
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symmetries in one- and two-dimensional systems. In fact, our condition 
flpl<,E(p)-ld"p = oo for a suitable function E(p) depending on the range 
of the interaction, is also necessary for a class of systems satisfying infrared 
'bounds and sum rules. As proved in Ref. 8 for instance, for these systems 
the condition f[1/E(p)] d~p < oo implies breakdown of continuous symme- 
try. 

The basic ideas of our proofs are borrowed from Ref, 1, and our 
contribution consists in giving optimal conditions for the validity of the 
arguments in Ref. 1 and also in showing that the same ideas can be used in 
proving cluster properties of certain correlation functions. This last result is 
a sharper version of results by Jasnow and Fisher. (9) 

Our results apply to classical and quantum systems both in the lattice 
and in the continuum cases, and the only property of the equilibrium state 
we use is Bogoliubov's inequality. In particular we do not assume either 
translation invariance of the state or of the interaction. 

We also prove cluster properties of the type 

I(A (O)B(x))I 2 < const 1 - cos p.x d~ p 

for A (or B) of the form A - - [ J , C ]  for some local C where J is an 
infinitesimal generator of the symmetry group. These bounds are an im- 
proved version of results by Fisher and Jasnow (9) as they are pointwise 
with no assumption about the "sign" of the interaction: they depend only 
on the range of forces and include many body interactions. 

Our bounds are so to speak ""a priori" as the rate of decay of 
correlation functions are model and temperature independent. Better 
(temperature-dependent) bounds are, of course, possible as for instance in 
Ref. 10, but they will be model dependent. 

In the Appendix we prove some estimates of independent interest as 
they extend results of Ref. 8 concerning the infrared behavior of one- and 
two-dimensional lattice systems with long-range interactions. 

2. LATTICE SYSTEMS 

2.1. Absence of Symmetry Breaking 

We begin with lattice systems in order to make our ideas more 
transparent. Our system is described as usual O1) by a C* algebra of 
observables d~ =l,.JAczod~A where the union is taken over all bounded 
subsets A of 7/~, ~ = 1 or 2; the bar indicates norm closure and ~gA is the C* 
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algebra of observables in A. The continuous symmetry group is described 
by a one-parameter group of automorphisms {o~,s E R) of d~ such that 
a,d~ A = d~ A. A state co is said to be invariant under the symmetry group if 
co(osA) = co(A), VA ~ if, and s ~ R. This is equivalent to 

d_ds co(a~A) "=~  = 0 ,  V A  ~ 

If we assume the existence of local generators J (x )E  r x E Z ~ 
such that 

(a,A) s=o i[JA,A], VA ~ff'A 

where JA = ~,xeAJ(X), then the invariance of w is equivalent to 

co([ JA,A ]) = 0, VA ~ CA and all A 

For each x E Z'let o,(x) be the action of the symmetry group at the site x. 
Following an idea of L. Landau (see Ref. 1), for a given function f :  Z~-~ R 
we define 

a,(f)  = @ o,f(x)(x ) (2.1) 
x E Tt ~ 

only property of an equilibrium state we are going to assume is The 
Bogoliubov's inequality, which may then be written in the form (12) 

where K = (d/ds)(d/dt)[o,(f)ot(f)Hll,=o,t=o. From (2.1) 

co(K) = ~ f ( x ) f ( y ) j ( x , y )  (2.3) 
x , y E Z  ~ 

wherej(x,  y) = (d/ds)(d/dt)co(os(x)ot(y)H)ls=o,,=o. In terms of local gen- 
erators c0(K) = Zx,y~.f(x)f(y)co([J(x), [J(y), H]]). 

The assumptions on H and f we are going to make (see Section 2.3) 
will ensure that ~0(K) is well defined by (2.3) provided f(x)  E l l(Z~). 

Theorem 1. Let j (x ,  y) satisfy the following properties: 
(i) j(x,  y ) = j ( y , x ) .  

(ii) j(x, .)  ~ l l (g ' )  and ~ye~ , j (x ,y )  = 0, Vx E Z ~. 
(iii) There exists a function g ~ ll(Z~) such that Ij(x, Y)I < g(x -y), 

Vx, y ~ Z ", and 

fie d]v - ~ for all 8 > 0 (2.4) 
I<e E(p) 
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Proof. 
0 E A. Then 

where 

E(p)= ~ (1-cosp.x)g(x) (2.5) 

Then the state ~0 satisfying Bogoliubov's inequality (2.2) is invariant under 
the symmetry group. 

Let A E ~A, for some finite A c 7/". For simplicity let us take 

d__ds ~~176 ,=0 = (d/ds)~176 s=o (2.6) 

for any f :  77" ---> ~ such that f(x) = f(0) =~ 0, Vx E A. Bogoliubov's inequal- 
ity then reads 

[ d [ z t8o~( A*A AA* o~(K) 
i ~ , o ( o , A ) l , =  ~ < + (2.7) 

2 ) If(o)t2 
From (i), (ii), and (iii), 

2 , X ion(K) I <<, 1 ~ [f(x)-f(y)] IJ( ,Y)[ 
x , y  E 77 ~ 

<~ 2 [I(x)-f(Y)]2g(x-Y) = [f(p)t2E(p) (2.8) 
x , y  E 7/" p 

with the Fourier transform f(p) given by 

f(P)= E e-'P'*f(x) and B.=[-~,Tr]" 
x ~ Tl" 

Without loss of generality (see Remark at the end of the proof) we can 
assume that there are 7 > 0 and ~ > 0 such that 

E(p) > vl?l 2 for lpl < 8 (2.9) 

We introduce 

E+(p)=E(p) if Ie[ < 8  
(2.10) 

E+(p)=max{E(p),782} if tP[ > 8 

and for e > 0 we choose f by 

f,(x) = e,(x) + h,(x) (2.11) 

where 

e,(x)=fs d"k cos k.x (2.12) 
, (2~)' e +  (k) + 
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and 

fB d~k 1 - cosk. /  
h , (x)=  c,(O)-e,(x)= ,(27r)" E+(--~)+-~' x E A  (2.13) 

L0, x ~ A  
Notice that the choice of h~ is such that f~(x) = c~(0), Vx ~ A, where 

e,(0)= ('j d~k 1 (2.14) 
(27r)' E+ (k) + c 

We estimate I f (P) l  2 by 

If(p)12 < ty,(p)[2 + 2iY,(p) I Is + ts  z (2.15) 

For/~,(p) the following estimate holds: 

Ih~(?)l < Q(A)<  oo (2.16) 

where Q(A) is a constant depending on A, but not on ~. In fact, from the 
definition (2.13) 

s., ( '-:)s "'< ': (2.,,.)" ? ' + ( 7 ~  "< 2 E+ , c a  , ,  x (2~r)" (k) 

and since I = f[d"k/(2rt)"][k2/E+ (k)] < m [because of (2.9)] (2.16) fol- 
lows with Q(A) = SZx~:,(Ixl2/2). 

Since 

1 (2.17) 
~'(/') - e+ (?) + 

using (2.8), (2.15), and (2.16) we get 

<( d"p 1 
I,~(K)I 3 (2~)" E+ (?) + 

= c,(O) + D ( A )  

where 

+ 2Q(A) + Q(A)Z r E(p) 
p 

(2.18) 

= 2Q(A) + Q(A)2fB d"p D(A) 

is independent of c. 
Therefore, from (2.7) and (2.18) 

-~sd s=O~o(asA) 2 < floa( A*A +2 AA* ) c~(O)c~(O) 2 +  D(A) (2.19) 
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This concludes the proof  since 

limc~(0) = lim ( d"P 
~$0 ~$0J  E + ( p ) + E  

- oo iff 

Bonato et al. 

Sp d"P - oo 

Remarks. Since 

E ( ? )  = E g ( x ) 0  - cosp.x)  

with g(x) >1 0 we see that  for v = 1 if x o 4= 0 is such that  g(Xo) > 0 then 
E(p) >~ g(Xo)(1 - cos pXo) >~ (2g(Xo)/~2)lxol2p z for  [Pl < ~/Ixol.  [of  
course, if g(x) = O, Vx  ~ 77 ~, then automat ica l ly  (d /  ds)~(osA)l,= o = 0.] For  
1, = 2 then either there are x o = (Xo ~ , Xo 2) and  Yo = (Yo ~ , Yo 2) with x~ 4 ~ 0 and  
yo 2 =~ 0 (x o m a y  be equal  to Yo) such that  g(xo) =/= 0 and  g(Yo) 4= 0 and so 

E(p)  >1 g(x0)(1 - cos p.xo) + g(y0)(1 - cos P.Yo) >1 clpl 2 

in some ne ighborhood of p -- 0 or then the  p rob lem can  be reduced to the 
one-dimensional  case. In  all cases we verify condi t ion (2.9). 

2.2. Cluster  Propert ies 

In  this section we show how the methods  of Ref. 1 and  of the previous 
section can be used in the derivat ion of bounds  and  cluster propert ies  of 
certain correlat ion functions. In  general  we do not  expect clustering for all 
correlat ion functions as there are models  in two dimensions (13) with short- 
range interactions and  a cont inuous symmet ry  exhibiting long-range order. 

Wi thout  loss of generali ty we shall consider two regions A 0 ~ 0 and  
A R ~ R, with A o A A R = 0,  and  three observables  A, D E ~Ao, BR E ~AR 
such that  

d 
A = -~s ~ [s=o (2.20) 

i.e., in terms of local generators,  

A = iIJAo,D ] (2.20') 

The  key point  of our  analysis is the identity 

( d /  as)o~(o~(f)( DBR ))1,=0 
o~(A B R ) = f (0 )  (2.21) 

provided f is chosen such that  

f(O) 4= 0, x ~ A o 
f ( x )  = O, x ~ A R 

(2.22) 
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and arbitrary otherwise. In other words the action of the group is constant 
in A o and is the identity in A R . 

The following choice of f is convenient: 

fR (x) -- c R (x) + h R (x) 

where 

c R (x) = fB, d"k 
(2Tr) ~ 

cosk.x - cosk. (x - 2R ) 

e +  (k) 

and 

(2.23) 

= J d~k 1 - -  e - 2 i k ' R  e i k . x  

38 (2~r)" E+ (k) 

(2.24) 

f c~ (0) - c~ (x), x e A0 
hR (x) = - ~ (x), x e & 

0, otherwise 

(2.25) 

With the above choice condition (2.22) is met. The choice of c R was 
inspired by Ref. 10. 

Bogoliubov's inequality together with (2.21) yields 

w(K) 
[~o(AB R )12 < BIIBRI [ I I D I I -  (2.26) 

If~(0)l 2 

Assuming again (i), (ii), and (iii) of Theorem 1 we have 

[~0(K)l j~ ,[fR(p)12E(p) (2.27) 
B~ (2~) 

Lemma,  The following estimate holds: 

[/~R (P)I < Q(Ao,AR)cR(O) 1/2 

where Q(A 0, AR) < ce is a constant depending on the sizes of A0, A R (but 
not on R). 

Proof. From the definition of h R, 

hR(p) = E e - i P x f  d~k (1 - e-aik'n)(1 -- e ik'x) 
Xeao -'B. (2Tr) ~ E+ (k) 

cosk.x - cosk. (x  - 2R)  

(2~r) ~ E .  (k) 
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Using Schwarz inequality and the identity cos a - cos b = 2 sin[(a + b) 
/2]sin[(b - a) /2]  we obtain 

1/2 
[fB d~k 1 - cos2k.R ) 

[/~R (P)[ < 2 x ~EAo ~ (2qr) ~ )~ + - ~  / 

(2 )1/2 d"k 1 - cosk.x 
x ,(2~)" E+(k) 

[sin[ k.(x - R ) ]sin(k.R )1 

f. + 2 x ~A.2 , (2~r)" E+ (k) 

<'/2 c. (O) '/2( x~Aolxl )I1/a 

+2;, 
, (2~')" E+ (k) x ~ a .  

where I= f~[d~k/(2vry][k2/E+(k)] < m as in Theorem 1. Since 
~,x~AolXl < (diamAo)lAol, s x -- R[ < (diamAR)lAR[, where d iamA 
= maxx:EAIX--Yl and IAI is the "volume" of A, applying once more 
Schwarz inequality we finally obtain 

[/~R (P)[ < ~ [ (diam Ao)lAo] + (diam A.)[A R []1 I/2c R (0) 1/2 

which proves the lemma with 

Q(Ao,AR) =,~-[(diamAo)lA0l + (diamA,)lAR[lI1/2.  �9 

From (2.27) and the lemma we estimate 

I'o(g)l <~_ ,d~e,~E(p)[I~R(p)I 2 + 2I~R(P)I IG(p) I  + IG(P)I  2] 
JB, t : r )  

< 2c.  (0) + 2 ~  Q(Ao,A~)cR(O)l/2f8 (1 - cos2p.R)  ~/2 v 
+ Q 2(A o , AR)c R (O)f 8 E(p) 

v 

Since both integrals in the above expression are finite, uniformly in R, 
it follows that 

[r .<< a(Ao,AR)cR(0 ) + b(Ao,AR)cR(O) 1/2 (2.28) 

where a and b are constants independent  of R. 
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Theorem 2. Le t j (x ,  y) satisfy properties (i), (ii), and (iii) of Theorem 
1. If A E ~Ao, B E ~AR' with A 0 f) A R = 0 and A = (d/ds)(o~D)[,= o for 
some D ~ ~Ao, then 

[I b(A~ ]r 2 < ]]BR[[ ]l D a ( A ~  + 
, c (0) 

where a(Ao, AR) and b(Ao, AR) are constants depending on Ao, A R but not 
on R. 

Proof. Immediate after (2.26) and (2.28). 

Romarks. (1) The clustering of co(NBR) is implied by the fact that 
CR(O)--->m as IRI-->m if flel<j~pE(p) -1= ~ (see Lemma A.2 in the 
Appendix). In this case for large enough [R [, cR(0 ) > CR(O) l/a, and we can 
rewrite the bound of Theorem 2 in a simpler form: 

a'(A0, AR) 
I~0(ABR)I 2 < filIBR[I I[DII cR(O ) 

(2) For one-dimensional lattice systems the results of Dobrushin (14'L5) 
imply L l clustering if 21 g(x)l lxl < ~ (here g is the coupling). Therefore 
our results are weaker in this case but are new in the cases where 
~ixl<Rg(x)[xl has logarithmic divergencies (see following section). 

2.3. Applications 

The discussion of this section is to provide a content for Theorems 1 
and 2. In fact we shall exhibit classes of models for which conditions (i), 
(ii), and (iii) are verified. Our discussion is based on Ref. 1. 

We assume that to each finite region A c 2 ~ is associated the IAI-body 
interaction H(A) E ~A, such that for each x E ?7 ~, ~ xllH(A)[ l < oo. 

The Hamiltonian is formally defined by 

H =  E H(A) 
A c ~  ~ 

in the sense that for A E gr,  F C Z ~, 

[ H , A ]  = 2 [ H(A),A ] 
F ( n A # O  

is well defined (the series is norm convergent in ~). 
Also 

d I = [   s(x)Hl  o E 
= A ~ x  I s = 0  
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which in terms of local generators is 

 o (x)Z-ls=o= E 
A ~ x  

and the corresponding expression for the functionj(x,  y) is 

j (x ,y)= E oa([S(x),[H(a),g(y)]]) 
A ~ x , y  

Condition (i) is a consequence of [os(x),a~(y)] = 0. The first part of 
condition (ii) follows from the bound: 

[j(x,y)t < 411J(x)ll IIJ(Y)ll ~ IIH(A)[I 
A ~ x,y 

so that 

IIj(x,.)ll~ = ~ Ij(x,y)[< constllJ(x)ll ~ [AIIIH(A)II 
y ~ E  ~ A ~ x  

where we assumed that supxe~,ilJ(x)l I < ~ and ~A~xlAI tlH(A)II < ~r for 
each x E W. 

In particular if the interaction is at most N body, that is, if H(A) = 0 if 
IAI > N, then 

[I J (  x,-)lll ~< const ~ IIH(A)II < 
A ~ x  

The second part of (ii) is a statement about the invariance of H(A) 
under the symmetry as: 

%H(A) = H(A)  for all A c 7/~, which implies 

= E ~ _ = 

Finally condition (iii) will follow from the uniform bound: 

[j(x,y)[ < 4[IJ(x)l [ [ [ J ( x -  z)l [ ~] [IH(A)I I 
A ~ x , x - z  

< g(z) for any x, yET/" ,  where z = x - y .  

In the case IlJ(x)l[ = IlJ(0)[I, for all x E 7/~, and H(A) is translation 
invariant the function g(x - y) may be defined by 

g(x-y)=4l[J(O)l[ 2 ~ lIB(A)[ I 
A ~ 0 , x  - y  

Notice that no assumption is made concerning translation invariance 
either of the state ~(.)  or of the Hamiltonian in general. 

As a more concrete application we shall now consider the simpler case 
of the Heisenberg model defined in the lattice (with two-body interaction). 



The Mermin-Wagner Phenomenon and Cluster Properlles 169 

To each site x E 7/~ there correspond spin operators Sl(x), S2(x), S3(x ) 
with the usual commutation relations, and with ~ =  1S,.2(x) = S(S + 1). 

The Heisenberg Hamiltonian is given (formally) by 

H = E {II(x, Y)[SI (x )SI (y )  -l- S2(x)S2(y)]  -)r I2(x ,y)S3(x)S3(y)) 
x , y E T Y  

with Ii(x, y) = Ii(y, x). 
The symmetry group consists of rotations around axis 3, which local 

generator is S3(x ). 
With the notation of Section 2.2 we choose 

A o=  (0}, A R = ( R ) ,  D=S2(O ), 

and Theorem 2 reads 

i,o(S~(O)&(R))l 2 < ~ s  ~ const for 
cR (0) 

The denominator c R (0) is given, as before, by 

fB d~k 1 -- cos2k.R 
c R(0) = . (2~r), E(k) 

with 

E(k) = 4S 2 ~ (1 - cosk.x)g(x) 
x ~ Z  ~ 

B~ = & ( R  ) 

IR [ large 

and 

IxVg(x) = ~ < 
x ~ Z  ~ 

E(k)  < 2S21kl ~ ~ [xl~g(x)= 2~$21kl" 
x E T / v  

2aS 2 1 - cos2k.R d,k~lnlRi, for ]RI large. 

then 

where g(x) is such that [Ii(x, y)[ < g(x - y). 
We assume here that g(x) is such that E(k) has no other zeros than 

k -- 0, so we can take E+ (k) = E(k), without worrying about other singu- 
larities of c R (0). 

Taking IR[ ~ oo implies eR(0)---> Ce, provided fB.[d"k/E(k)] = 
(Lemma A2 of the Appendix), the rate of divergence depending on the 
singularities of E(k)-1 a t  k = 0. 

If we have 
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If the p-moment of g(x) has only logarithmic divergencies, that is, for 
some m/> 1 

sup 1 ~ Ixl'g(x) < 
Q In Q l n 2 Q . . .  lnmQ Ixl<Q 

where ln~Q = l n l n . . .  In Q (k times), the behavior of E(k) for ]k t suffi- 
ciently small will be 

E(k) < C l k l " l n l k l - ' l n 2 l k [ - 1 .  . . lnmlk[-' 

(for a proof see the Appendix) and cR(O)~lnm+ dR I, [RI large. 

3. C O N T I N U U M  S Y S T E M S  

In this section we briefly discuss as our results and techniques can be 
extended to cover classical and quantum systems defined on the continuum 
W. We shall not discuss in this paper the features of the interaction and of 
the states necessary for the assumptions involved to be valid. 

Cont inuum systems are also described by a C* algebra ~ = 
UAcR,,Abounaed(~A and we will also assume the existence, in the recon- 
structed GNS Hilbert space, of local generators (in general unbounded 
operators) J(x), x E W, of the symmetry, i.e., 

os(f)A = eisJ(f)Ae-i~J(f) for A @ t~ A 

where J ( f ) =  f d'xf(x)J(x) with f(x)= 1 for x E A [J(x) need not be 
strictly localized; see Ref. 16]. 

As in Section 2.1 we define 

~o(K) = f f d'xd> f(x)f(y)j(x, y) 

with 

j(x, y)= -ico([J(x),J(y)]) and J ( y ) = d  eitl4j(y)e-itnt= ~ 

Theorem 3. Any state ~0 in a continuum system satisfying Bogoliu- 
boy's inequality and 

(i) j(x, y) is measurable and j (x ,  y) =j(y,x) a.e., 
(ii) j(x, .) E LI(R ") and fR~j(x, y)d~ = 0 a.e., 
(iii) there exists a function g E LI(R p) such that 

[j(x, fl)l < g(x - y) a.e. and 

lip d~P -oo for all 8 > 0  
I< a E(p) 
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where E ( p ) = f ( 1 - c o s p . x ) g ( x ) d ~ x ,  is invariant under the symmetry 
group. 

The proof is entirely analogous to that of Theorem 1, with a slightly 
different choice of the function c,(x): 

c , ( x ) = f a  d~k cosk.x ~(k) (3.1) 
, (2vr)" E ( k )  + e 

with q,(k) E C0~(RP), 4~(k) = r  k), q~(k) = 0 for Ik] > 8, for some 6 > 0 
and ~(0) = 1. 

Here we need not define E+ (k) as in (2.10), due to the introduction of 
the large-k cutoff q~(k) in (3.1). Also notice that for any �9 > 0, c,(x) 
decreases exponentially fast as Ix I + m, which will ensure a "bona-fide" 
definition of J ( f )  in most cases. 

The continuum analog of Theorem 2 is the following: 

Theorem 4. Let A E ~ao, B E 6gA,, with A 0 C) A R = O and A 
= (d/ds)(o,D)[~= o for some D E d~Ao. Then for any state in a continuum 
system satisfying the hypothesis of Theorem 3 we have 

[ Qx(A~ + Q2(A~ ] C R ( 0 ) 3 / 2  A ]to(ABR)l 2 < BIIDII IIBRll / 
k. 

where Qx(Ao, AR) and Q2(Ao, AR) are constants depending on Ao, A R but 
not on R, and where 

cR(0)=  f d~k 1 - c o s 2 k . R  E(k) r 

with ~(k) defined above. 

Again the proof is similar to that of Theorem 2, where now 

cR(x)=f cos( .x - cos[k.(z-E(k  2R)] 

Here also, by Lemma A2, limlRl_~eR(0 ) = ~ if flkl<~[d"k/E(k)] 
= ~ ,  which gives clustering for o~(ABR). 

As a final remark we notice that Theorems 3 and 4 are also valid for 
classical systems in the continuum case, replacing commutators by Poisson 
brackets. 

APPENDIX 

In this section we extend some results contained in Ref. 8 and, for the 
reader's convenience, we give a simple proof of the divergent behavior of 
c R (0) as ] R I ---> oo. 
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Let A N C 7/", v = 1 or 2, be the "square" centered at the origin with 
sides 2N, N integer, that is, A N --- ( - N ,  - N  + 1 . . . . .  N )L  

Lemma A1. Let E ( p ) =  ~xeZ,(1 - c o s p . x ) g ( x )  with g(x) > 0 and 
let K(N) = Ex~ANIxFg(x)- If SUPs[K(N) / l nN l n2N . . .  lnkN ] < ~ for 
some k/> 1 then, for Ipl sufficiently small, 

f(p) < ClpV1nlpl-'In=Ipl-2 . . . lnklp[ -~ 

Proof. The proof is along the lines of that of Theorem 5.5 in Ref. 8. 
Since 1 - cosp .x  < (1/2)lp121xl 2 and 1 - cos p.x < IPl Ixl, 

E(p) = ~ ]  ( 1  - cosp.x)g(x) + ~ ( 1  - cosp .x)g(x)  
x E A  N xEAcN 

Ipl ~ ~ Ixl~g(x) + 2 ~ g(x) 
X~AN xEA~v 

For M > N 
M 

X g(x)= X X 
x E ( A M \ A N )  n =  N + 1 x ~ O A  n 

as Ix[ ~ />n " f o r x E a A  n .Now 

ixl ~ M 1 -~g(x)~ 2 n-7 E Ixl~(x) 
n = N + l  x ~ O A n  

(A1) 

Ixl'g(x) = K(n) - K(n - 1) 
xEOA~ 

and so (A1) is bounded by 
M 

2 < E 
xE(AM\NN ) n=  N +  1 

But 

l_l_ [K(n)  - K(n - 1)] 
n p 

M-l  [ 1 1 ]K(n)  
n" (n + 1)" n = N + l  

1 K(N) + - ~ K ( M )  ( N +  1) ~ 

M--1 g ( n )  
1 K ( M )  + 3 

<-M-; n ,+l  n = N + l  

(A2) 

K(n) << Clnnln2n . . .  ln~n (A3) 
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and hence 

lim K(M) - 0 (A4)  
M-'~' ~ M" 

Taking the limit M ~ ~ in (A2) and using (A3) and (A4) gives 

~. g(x)<.3C ~ lnnln2n'''lnkn f ~  lnxlnzx' ' ' lnkx 
x~A~v n=N+l n ~+1 ~< 3C ~-~u dx 

Integration by parts yields 

lnx  ln2x . . .  lnkx 
ex 

! 1 lnNln2 N . . .  ln~N 
P 2V 

+ ; l f ~ l  (ln2 x . . . . . .  l nkx+ ln3x  l n k x + . . .  + l ) d x  (A5) 

If N is sufficiently large 

lnN / > l n 2 N )  . . .  > l n k N > 2  

which leads to 

f;~lnxln2x.. ,  ln~x 2 1 
x~+i dx < 2 t , ~  N ~ lnNln2N " " " lnkN 

By choosing N = [IPl-=] we conclude the proof. [] 

Remark. For the one-dimensional case (v = 1) better bounds can be 
obtained (1) for particular g(x). For instance, if g(x)= C/(1 + x 2) then 

(1 - cose.x)g(x) 

sin2(px/2) fo ~ sin2(px/2) 
= 4 C  - < 4 C  - ----  dx 

x = l  1 + x 2 

sin2(y/2) f sin2(y/2) 
--4C[pl)o~f pZ + y2 dy<~ 4ClP[)o ~ y2 uy<  constlpl 

which improves the bound from Lemma A1. 

i . e m m a  A2.  Let G(x) be a continuous function on B . -  {0} such 
that G(x) >1 0 and fBG(x)d"x = ~ .  Then 

lim ["  (1 - cos2R.x)G(x)d~x= oo 
R'--> oo dBv 
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Proof. Let ] R [ ~ = m a x ( R  1 . . . . .  R ' ) .  For R ~ 0  let us divide R" 
into cubic regions with sides of length e /IR [~, such that x = 0 is the center 
of one such region, and l e t / j , j  = 1, . . . ,  N(R), be those cubes contained 
in B,, not including the cube centered at x = 0. Then 

N(R) _ 

(1 - cos2R.x)G(x)d (x) J .V - cos2R.xW(x d x 

N(R) 

>1 2 [ m i n G ( x ) ] ( ( 1 - c ~  d~x 
j = l  LXe6 -] J/s 
N(R) 

= E IbI[ m i n G ( x ) ]  
j= l  kxe6  J 

since _ ~bcos 2 R. x d~ x = O. 
But as R---) ~ we have that I R [o~ ~ r and hence 

N(R) 

E [ / j l [ m i n G ( x ) ] - > ( G ( x )  d~x=~176 I 
j = l  x e I j  J JB, 
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